| Var                  | Given value | Units   | Description    |
|----------------------|-------------|---------|----------------|
| speed <sub>ave</sub> |             | km<br>h | average speed  |
| d                    | 147         | km      | total distance |
| t                    | 2.25        | h       | elapsed time   |

speed ave = 
$$\frac{d}{t}$$
  
=  $\frac{147 \text{km}}{2.25 \text{h}}$   
=  $65.3 \frac{\text{km}}{\text{h}}$ 

| Var                    | Given value | Units         | Description                  |
|------------------------|-------------|---------------|------------------------------|
| starttime A            | 3.00        | h             | start time for A             |
| starttime <sub>B</sub> | 4.00        | h             | start time for B             |
| finishtime             | 6.00        | h             | finish time for both A and B |
| time <sub>A</sub>      |             | h             | time elapsed for A           |
| time <sub>B</sub>      |             | h             | time elapsed for B           |
| time <sub>A,s</sub>    |             | S             | time elapsed for A           |
| time <sub>B,s</sub>    |             | S             | time elapsed for B           |
| speed ave,A            | 3.0         | m/s           | ave speed of A               |
| distance A             |             | m             | distance A goes              |
| speed ave,B            | 4.0         | <u>m</u><br>s | ave speed of B               |
| distance B             |             | m             | distance B goes              |

$$speed_{ave,B} = \frac{distance_B}{time_B}$$

$$time_A = finishtime - starttime_A$$

$$= (6.00 \, h) - (3.00 \, h)$$

### 2.4 (continued)

time 
$$_{A,s} = time_A \rightarrow s$$

$$= (3.00 \text{ h}) \left(3600 \frac{s}{h}\right)$$

$$= 1.08 \times 10^4 \text{ s}$$

$$time_B = (finishtime - starttime_B)$$

$$= (6.00 \text{ h}) - (4.00 \text{ h})$$

$$= 2.00 \text{ h}$$

$$time_{B,s} = time_B \rightarrow s$$

$$= (2.00 \text{ h}) \left(3600 \frac{s}{h}\right)$$

$$= 7.20 \times 10^3 \text{ s}$$

#### 2.4 (continued)

$$speed_{\text{ave},A} = \frac{distance_A}{time_{A,s}}$$

$$distance_A = time_{A,s} speed_{\text{ave},A}$$

$$= (1.08 \times 10^4 \text{ s}) (3.0 \frac{\text{m}}{\text{s}})$$

$$= 3.2 \times 10^4 \text{ m}$$

$$speed_{\text{ave},B} = \frac{distance_B}{time_{B,s}}$$

$$distance_B = time_{B,s} speed_{\text{ave},B}$$

$$= (7.20 \times 10^3 \text{ s}) (4.0 \frac{\text{m}}{\text{s}})$$

$$= 2.9 \times 10^4 \text{ m}$$

No, B goes less distance by 6:00PM.

| Var                  | Given value | Units   | Description                    |
|----------------------|-------------|---------|--------------------------------|
| speed <sub>ave</sub> | 90.         | km<br>h | average speed                  |
| d                    | 225         | km      | distance                       |
| t                    |             | h       | time for trip without stopping |

speed ave = 
$$\frac{d}{t}$$

$$t \, speed_{ave} = d$$

$$t = \frac{d}{speed_{ave}}$$

$$= \frac{225 \,\mathrm{km}}{90.\frac{\mathrm{km}}{\mathrm{h}}}$$



$$3.5h - 2.5h = 1h$$

| Var              | Given value           | Units | Description    |
|------------------|-----------------------|-------|----------------|
| speed ave        | 3.00 ×10 <sup>8</sup> | m/s   | speed of light |
| d <sub>km</sub>  | 4.50 ×10 <sup>9</sup> | km    | distance       |
| t                |                       | S     | time           |
| d                |                       | m     | distance       |
| t <sub>min</sub> |                       | min   | time           |

$$d = d_{km} \rightarrow m$$

$$= (4.50 \times 10^{9} \text{ km}) \left(1000 \frac{\text{m}}{\text{km}}\right)$$

$$= 4.50 \times 10^{12} \text{ m}$$

$$speed_{ave} = \frac{d}{t}$$

$$t \, speed_{ave} = d$$

$$t = \frac{d}{speed_{ave}}$$

## 2.8 (continued)

$$= \frac{4.50 \times 10^{12} \text{ m}}{3.00 \times 10^{8} \frac{\text{m}}{\text{s}}}$$

$$= 1.50 \times 10^{4} \text{ s}$$

$$t_{\text{min}} = t \rightarrow \text{min}$$

$$= (1.50 \times 10^{4} \text{ s}) \left(0.01666666667 \frac{\text{min}}{\text{s}}\right)$$

= 250.min 🗸

| Var                   | Given value | Units   | Description              |
|-----------------------|-------------|---------|--------------------------|
| speed                 | 50.         | km<br>h | ave speed for whole trip |
| d                     |             | km      | distance whole trip      |
| t                     | 9.0         | h       | time whole trip          |
| speed <sub>1 st</sub> | 45          | km<br>h | ave speed 1st half       |
| $d_{1 \text{ st}}$    |             | km      | distance 1st half        |
| t <sub>1 st</sub>     |             | h       | time 1st half            |
| speed 2 nd            |             | km<br>h | ave speed 2nd half       |
| $d_{2 \text{ nd}}$    |             | km      | distance 2nd half        |
| t <sub>2 nd</sub>     |             | h       | time 2nd half            |

$$speed = \frac{d}{t}$$

$$t speed = d$$

$$d = t speed$$

$$= (9.0 \, h) \left(50. \, \frac{km}{h}\right)$$

$$= 4.5 \times 10^{2} \text{ km}$$

### 2.10 (continued)

$$d_{1st} = \frac{d}{2}$$

$$= \frac{4.5 \times 10^{2} \text{ km}}{2}$$

$$= 2.2 \times 10^{2} \text{ km}$$

$$d_{2nd} = \frac{d}{2}$$

$$= \frac{4.5 \times 10^{2} \text{ km}}{2}$$

$$= 2.2 \times 10^{2} \text{ km}$$

$$speed_{1st} = \frac{d_{1st}}{t_{1st}}$$

$$t_{1st} speed_{1st} = d_{1st}$$

$$t_{1 \text{st}} = \frac{d_{1 \text{st}}}{speed_{1 \text{st}}}$$
$$= \frac{2.2 \times 10^{2} \text{km}}{45 \frac{\text{km}}{\text{h}}}$$

### 2.10 (continued)

$$= 4.9 h$$

$$t_{2nd} = t - t_{1st}$$

$$= (9.0 h) - (4.9 h)$$

$$= 4.1 h$$

$$speed_{2nd} = \frac{d_{2nd}}{t_{2nd}}$$

$$= \frac{2.2 \times 10^{2} \text{ km}}{4.1 h}$$

$$= 54. \frac{\text{km}}{h}$$



| Var                | Given value | Units         | Description           |
|--------------------|-------------|---------------|-----------------------|
| speed <sub>1</sub> | 5.0         | <u>m</u><br>s | ave speed of jogger 1 |
| $d_1$              |             | m             | distance for jogger 1 |
| t                  |             | S             | time for both joggers |
| $d_2$              |             | m             | distance for jogger 2 |
| L                  | 25          | m             | length of gym         |
| speed <sub>2</sub> |             | m/s           | ave speed of jogger 2 |

#### 2.12 (continued)

$$d_{1} = L + L$$

$$= (25 \text{ m}) + (25 \text{ m})$$

$$= 50 \text{ m}$$

$$speed_{1} = \frac{d_{1}}{t}$$

$$t \text{ speed}_{1} = d_{1}$$

$$t = \frac{d_{1}}{speed_{1}}$$

$$= \frac{50 \text{ m}}{5.0 \frac{\text{m}}{\text{s}}}$$

$$= 10. \text{ s}$$

$$d_{2} = \sqrt{L^{2} + L^{2}}$$

$$= \sqrt{(25 \text{ m})^{2} + (25 \text{ m})^{2}}$$

$$= 35.35533906 \text{ m}$$

# 2.12 (continued)

speed<sub>2</sub> = 
$$\frac{d_2}{t}$$
  
=  $\frac{35.35533906 \text{ m}}{10.\text{ s}}$   
=  $3.5 \frac{\text{m}}{\text{s}}$