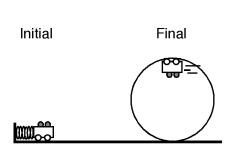
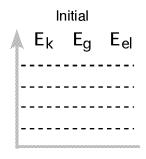
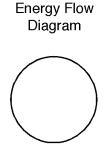
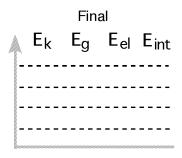
Name			

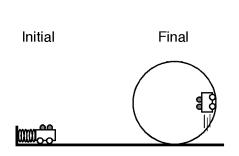

Date	P	ď	

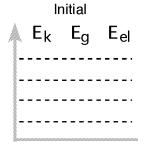

Unit VII: Worksheet 3a

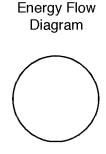

For each situation shown below:


- 1. Show your choice of system in the energy flow diagram, unless it is specified for you.

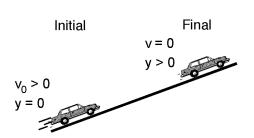
 **Always include the earth in your system.
- 2. Decide if your system is frictionless or not, and state this.
- 3. Sketch an energy bar graph for the initial situation.
- 4. Then complete the analysis by showing energy transfers and the final energy bar graph.
- 1. A car on a roller coaster track, launched by a huge spring, makes it to the top of the loop.



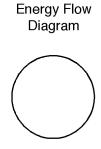




2. The same car is launched by the spring, but it is only half way up the loop.

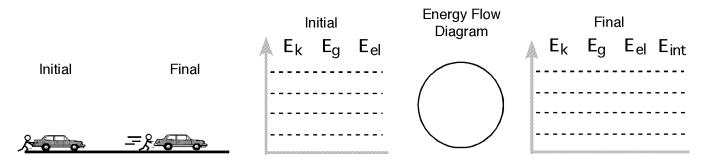


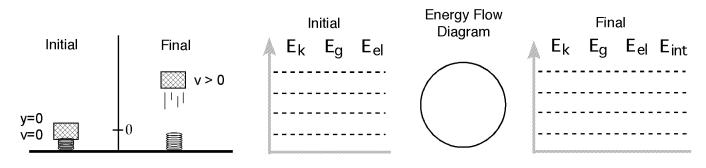




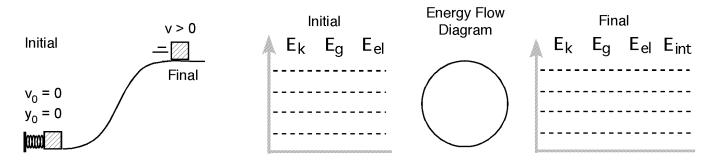
	Final					
	E_k	E_g	E_{el}	E_{int}		
-						
-						
-						
-						

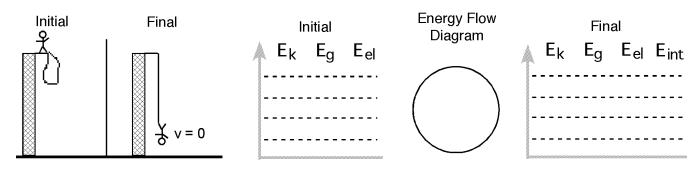
3. A moving car, moving up a hill, coasts to a stop up.

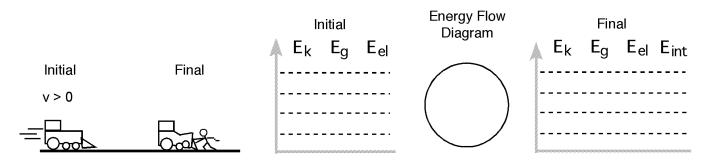




	Final					
	E_k	Eg	E_{el}	E_{int}		
- - -			 			
-			 			


4. A person pushes a stalled car to get it to the service station.


5. A load of bricks, resting on a compressed spring, is launched into the air.


6. A crate, starting at rest, is propelled up a hill by a tightly coiled spring.

7. A bungee jumper falls off the platform and reaches the limit of stretch of the cord.

8. Superman, stopping a speeding locomotive, is pushed backwards a few meters in the process.

9. Create your own situation and construct corresponding energy bar graphs and system schema.

System = _____

Initial ♠ E _k E _g E _{el}	Energy Flow Diagram	Final Ek Eg Eel E			E _{int}