tension - unequal angles

Find the tensions in strings 1 and 2 supporting a 20.0 N rock hanging from the ceiling. Strings 1 and 2 make angles of 30.0° and 40.0° with the ceiling, respectively.

Var	Given value	Units	Description
θ_{1}	30.0	\circ	angle of string 1 with ceiling
θ_{2}	40.0	\circ	angle of string 2 with ceiling
W_{RE}	20.0	N	weight on rock by earth
$F_{\mathrm{NET}, \mathrm{x}}$	0	N	sum of forces in x-direction
$F_{\mathrm{NET}, \mathrm{Y}}$	0	N	sum of forces in y-direction
$T_{\mathrm{R} 1}$		N	tension on rock by string 1
$T_{1 \mathrm{x}}$		N	x -component of $\mathrm{T}_{\mathrm{R} 1}$
$T_{1 \mathrm{y}}$		N	y -component of $\mathrm{T}_{\mathrm{R} 1}$
$T_{\mathrm{R} 2}$		N	tension on rock by string 2
$T_{2 \mathrm{x}}$		N	$\mathrm{x}-$ component of $\mathrm{T}_{\mathrm{R} 2}$
$T_{2 \mathrm{y}}$		N	y -component of $\mathrm{T}_{\mathrm{R} 2}$

Equation for the sum of forces in the x-direction:

tension - unequal angles (continued)

$$
\begin{array}{r}
F_{\mathrm{NET}, \mathrm{X}}=0 \\
-T_{1 \mathrm{x}}+T_{2 \mathrm{x}}=0
\end{array}
$$

$$
-T_{\mathrm{R} 1} \cos \theta_{1}+T_{\mathrm{R} 2} \cos \theta_{2}=0
$$

Equation for the sum of forces in the y-direction:

$$
F_{\mathrm{NET}, \mathrm{Y}}=0
$$

$$
T_{1 \mathrm{y}}+T_{2 \mathrm{y}}+\left(-W_{\mathrm{RE}}\right)=0
$$

$$
T_{\mathrm{R} 1} \sin \theta_{1}+T_{\mathrm{R} 2} \sin \theta_{2}+\left(-W_{\mathrm{RE}}\right)=0
$$

We have 2 equations and two unknowns. Solve the first equation for $T_{R 1}$.
$-T_{\mathrm{R} 1} \cos \theta_{1}+T_{\mathrm{R} 2} \cos \theta_{2}=0$

$$
\begin{aligned}
\tau_{\mathrm{R} 1} \cos \theta_{1} & =T_{\mathrm{R} 2} \cos \theta_{2} \\
T_{\mathrm{R} 1} & =\frac{\tau_{\mathrm{R} 2} \cos \theta_{2}}{\cos \theta_{1}}
\end{aligned}
$$

Substitute for $T_{R 1}$ into the second equation and solve for $T_{R 2}$.

tension - unequal angles (continued)

$$
T_{\mathrm{R} 1} \sin \theta_{1}+T_{\mathrm{R} 2} \sin \theta_{2}+\left(-W_{\mathrm{RE}}\right)=0
$$

$$
\frac{T_{\mathrm{R} 2} \cos \theta_{2}}{\cos \theta_{1}} \sin \theta_{1}+T_{\mathrm{R} 2} \sin \theta_{2}+\left(-W_{\mathrm{RE}}\right)=0
$$

$$
\begin{aligned}
\frac{T_{\mathrm{R} 2} \cos \theta_{2}}{\cos \theta_{1}} \sin \theta_{1}+T_{\mathrm{R} 2} \sin \theta_{2} & =W_{\mathrm{RE}} \\
\left(\sin \theta_{2}+\frac{\cos \theta_{2}}{\cos \theta_{1}} \sin \theta_{1}\right) T_{\mathrm{R} 2} & =W_{\mathrm{RE}} \\
T_{\mathrm{R} 2} & =\frac{W_{\mathrm{RE}}}{\sin \theta_{2}+\frac{\cos \theta_{2}}{\cos \theta_{1}} \sin \theta_{1}} \\
& =\frac{20.0 \mathrm{~N}}{\sin \left(40.0^{\circ}\right)+\frac{\cos \left(40.0^{\circ}\right)}{\cos \left(30.0^{\circ}\right)} \sin \left(30.0^{\circ}\right)} \\
& =18.4 \mathrm{~N} \\
T_{\mathrm{R} 1} & =\frac{T_{\mathrm{R} 2} \cos \theta_{2}}{\cos \theta_{1}} \\
& =\frac{(18.4 \mathrm{~N}) \cos \left(40.0^{\circ}\right)}{\cos \left(30.0^{\circ}\right)} \\
& =16.3 \mathrm{~N}
\end{aligned}
$$

