tension - unequal angles

Find the tensions in strings 1 and 2 supporting a 20.0 N rock hanging from the ceiling. Strings 1 and 2 make angles of 30.0° and 40.0° with the ceiling, respectively.

Var	Given value	Units	Description
θ_1	30.0	0	angle of string 1 with ceiling
θ_2	40.0	0	angle of string 2 with ceiling
W_{RE}	20.0	N	weight on rock by earth
$F_{NET,X}$	0	N	sum of forces in x-direction
$F_{NET,Y}$	0	N	sum of forces in y-direction
T_{R1}		N	tension on rock by string 1
$T_{1 x}$		N	x-component of T _{R1}
$T_{1 y}$		N	y-component of T _{R1}
T_{R2}		N	tension on rock by string 2
T_{2x}		N	x-component of T _{R2}
T_{2y}		N	y-component of T _{R2}

Equation for the sum of forces in the x-direction:

tension - unequal angles (continued)

$$F_{NET.X} = 0$$

$$-\mathcal{T}_{1x}+\mathcal{T}_{2x}=0$$

$$-T_{R1}\cos\theta_1 + T_{R2}\cos\theta_2 = 0$$

Equation for the sum of forces in the y-direction:

$$F_{NET.Y} = 0$$

$$T_{1y} + T_{2y} + (-W_{RE}) = 0$$

$$T_{R1} \sin \theta_1 + T_{R2} \sin \theta_2 + (-W_{RE}) = 0$$

We have 2 equations and two unknowns. Solve the first equation for T_{R1} .

$$-T_{\rm B1}\cos\theta_1 + T_{\rm B2}\cos\theta_2 = 0$$

$$T_{\text{B1}}\cos\theta_1 = T_{\text{B2}}\cos\theta_2$$

$$T_{R1} = \frac{T_{R2}\cos\theta_2}{\cos\theta_1}$$

Substitute for T_{R1} into the second equation and solve for T_{R2} .

tension - unequal angles (continued)

$$T_{R1} \sin \theta_1 + T_{R2} \sin \theta_2 + (-W_{RE}) = 0$$

$$\frac{T_{\text{R2}}\cos\theta_{2}}{\cos\theta_{1}}\sin\theta_{1} + T_{\text{R2}}\sin\theta_{2} + (-W_{\text{RE}}) = 0$$

$$\frac{T_{R2}\cos\theta_2}{\cos\theta_1}\sin\theta_1 + T_{R2}\sin\theta_2 = W_{RE}$$

$$\left(\sin \theta_2 + \frac{\cos \theta_2}{\cos \theta_1} \sin \theta_1\right) T_{R2} = W_{RE}$$

$$T_{R2} = \frac{W_{RE}}{\sin \theta_2 + \frac{\cos \theta_2}{\cos \theta_1} \sin \theta_1}$$

$$= \frac{20.0 \,\mathrm{N}}{\sin(40.0^{\,\circ}) + \frac{\cos(40.0^{\,\circ})}{\cos(30.0^{\,\circ})} \sin(30.0^{\,\circ})}$$

$$T_{R1} = \frac{T_{R2}\cos\theta_2}{\cos\theta_1}$$

$$= \frac{(18.4 \,\mathrm{N})\cos(40.0^{\circ})}{\cos(30.0^{\circ})}$$

$$= 16.3 N$$